Conformal dimension and canonical splittings of hyperbolic groups

نویسنده

  • Matias Carrasco Piaggio
چکیده

We prove a general criterion for a metric space to have conformal dimension one. The conditions are stated in terms of the existence of enough local cut points in the space. We then apply this criterion to the boundaries of hyperbolic groups and show an interesting relationship between conformal dimension and some canonical splittings of the group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spaces with Conformal Dimension Greater than One

We show that if a complete, doubling metric space is annulus linearly connected then its conformal dimension is greater than one, quantitatively. As a consequence, hyperbolic groups whose boundaries have no local cut points have conformal dimension greater than one; this answers a question of Bonk and Kleiner.

متن کامل

Spaces and Groups with Conformal Dimension Greater than One

We show that if a complete, doubling metric space is annularly linearly connected then its conformal dimension is greater than one, quantitatively. As a consequence, we answer a question of Bonk and Kleiner: if the boundary of a one-ended hyperbolic group has no local cut points, then its conformal dimension is greater than one.

متن کامل

Measures of Maximal Dimension for Hyperbolic Diffeomorphisms

We establish the existence of ergodic measures of maximal Hausdorff dimension for hyperbolic sets of surface diffeomorphisms. This is a dimension-theoretical version of the existence of ergodic measures of maximal entropy. The crucial difference is that while the entropy map is upper-semicontinuous, the map ν 7→ dimH ν is neither uppersemicontinuous nor lower-semicontinuous. This forces us to d...

متن کامل

Metric Conformal Structures and Hyperbolic Dimension

For any hyperbolic complex X and a ∈ X we construct a visual metric ď = ďa on ∂X that makes the Isom(X)-action on ∂X bi-Lipschitz, Möbius, symmetric and conformal. We define a stereographic projection of ďa and show that it is a metric conformally equivalent to ďa. We also introduce a notion of hyperbolic dimension for hyperbolic spaces with group actions. Problems related to hyperbolic dimensi...

متن کامل

Boundaries of strongly accessible hyperbolic groups

We consider splittings of groups over finite and two-ended subgroups. We study the combinatorics of such splittings using generalisations of Whitehead graphs. In the case of hyperbolic groups, we relate this to the topology of the boundary. In particular, we give a proof that the boundary of a one-ended strongly accessible hyperbolic group has no global cut point. AMS Classification 20F32

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016